Name \qquad
\qquad

1.1 - Points, Lines, and Planes

Name each line two different ways.
1.

Name each line segment or ray two different ways.
4.

$$
\overline{H V}, \overline{V H}
$$

5.

Use the figure below for Exercises 6-13. Note that $\overleftrightarrow{R N}$ pierces the plane at N. It is not coplanar with V.

9. What are two other ways to name plane V ?

Plane ANC, Plane CNX (Just as long as yare use 3pts on plane)
10. Are points R, N, M, and X coplanar?
6. Name two segments shown in the figure.

$$
N_{0}
$$

$$
\overrightarrow{A N}, \overrightarrow{N X}, \text { etc. }
$$

11. Name two rays shown in the figure.

$$
\overrightarrow{N A}, \overrightarrow{N M}, \text { etc. }
$$

7. What is the intersection of $\overleftrightarrow{C M}$ and $\overleftrightarrow{R N}$

$$
\text { Point } N
$$

12. Name the pair of opposite rays with endpoint N.
$\overrightarrow{N A}, \overrightarrow{N X}$, etc.
13. Name three collinear points.

$$
\begin{aligned}
& \text { Points } A, N \text {, and } X \\
& \text { (various answers) }
\end{aligned}
$$

13. How many lines are shown in the drawing?

For Exercises 14-19, determine whether each statement is always (A), sometimes (S), or never (N) true.
14. $\overrightarrow{G H}$ and $\overrightarrow{H G}$ are the same ray.

15. $\overrightarrow{J I}$ and $\overrightarrow{J L}$ are opposite rays. \qquad
16. A plane contains only three points. \qquad
N
17. Three noncollinear points are contained in only one plane. \qquad
A
18. If $\overleftrightarrow{E G}$ lies in plane X, point G lies in plane X. \qquad
19. If three points are coplanar, they are collinear. \qquad
20. Reasoning: Is it possible for one ray to be shorter in length than another? Explain.

No. All rays have the same length since they all
go on forever in one direction.
21. Open-Ended: Draw a figure of two planes that intersect in $\overleftrightarrow{S T}$.

22. Draw a figure to fit each description
a. Through any two points there is exactly one line.
b. Two distinct lines can intersect in only one point.

23. Reasoning: Point F lies on $\overrightarrow{E G}$ and point M lies on $\overrightarrow{E N}$. If F, E, and M are collinear, what must be true of these rays?

Use the figure for Exercises 24-28. Name the intersection of each pair of planes or lines.
24. planes $A B P$ and $B C D$

27. planes $B C D$ and $B C Q$

26. planes $A D R$ and $D C Q$

$$
\stackrel{\rightharpoonup}{D R}
$$

